①k=1时,甲、乙比赛结果为平局的概率为;②k=2时,甲赢得比赛与乙赢得比赛的概率均为;③在2k局比赛中,甲获胜的局数的期望为k;④随着k的增大,甲赢得比赛的概率会越来越接近 .
时长(小时)
人数(人)
3
4
33
42
18
用表格中的频率估计概率,且每个学生完成各科作业时互不影响.
(ⅰ)利用该正态分布,求;
(ⅱ)假设某企业从该汽车公司购买了20辆该款新能源汽车,记Z表示这20辆新能源汽车中单次最大续航里程位于区间(250.25,399.5)的车辆数,求E(Z);
参考数据:若随机变量ξ服从正态分布 , 则 , .
(Ⅰ)用 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量 的分布列和数学期望;
(Ⅱ)设 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件 发生的概率.
某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
(Ⅰ)求Z的分布列和均值;该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.