0
返回首页
1. 数列
满足
,
为数列
的前n项和,则( )
A.
B.
C.
D.
【考点】
数列的递推公式;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
多选题
普通
能力提升
变式训练
拓展培优
真题演练
换一批
1. 已知函数
, 数列
满足:对任意
, 且
,
, 数列
的前
项积为
, 则下列说法中正确的有( )
A.
B.
为等差数列
C.
D.
满足
的正整数
的最大值为8
多选题
普通
2. 如图,在平面直角坐标系中的一系列格点
, 其中
且
.记
, 如
记为
,
记为
,
记为
, 以此类推;设数列
的前
项和为
.则( )
A.
B.
C.
D.
多选题
普通
3. 数列{
}中,设
.若
存在最大值,则
可以是( )
A.
B.
C.
D.
多选题
普通
1. 已知
, 若
,
满足
的最小
k
为
。
填空题
普通
2. 已知
为正项数列
的前
项的乘积,且
, 则
( )
A.
16
B.
32
C.
64
D.
128
单选题
普通
3. 对于数列
, 规定
为数列
的一阶差分,其中
, 规定
为数列
的
k
阶差分,其中
. 若
, 则
( )
A.
7
B.
9
C.
11
D.
13
单选题
普通
1. 如图,已知点列
与
满足
,
且
, 其中
,
.
(1)
求
;
(2)
求
与
的关系式;
(3)
证明:
.
解答题
困难
2. 某企业2022年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到50%,每年年底扣除下一年的消费基金
千万元后,剩余资金投入再生产.设从2022年的年底起,每年年底企业扣除消费基金后的剩余资金依次为
,
,
, …
(1)
写出
,
,
, 并证明数列
是等比数列;
(2)
至少到哪一年的年底,企业的剩余资金会超过21千万元?
解答题
普通
3. 已知数列
满足
(1)
设
, 证明数列
为等差数列,并求数列
的通项公式;
(2)
求数列
的前
项和.
解答题
困难
1. 已知数列
满足
,则( )
A.
B.
C.
D.
单选题
普通
2. 已知数列
的各项均为正数,其前
项和
,满足
给出下列四个结论:
①
的第2项小于3; ②
为等比数列;
③
为递减数列; ④
中存在小于
的项。
其中所有正确结论的序号是
.
填空题
困难
3. 通过以下操作得到一系列数列:第1次,在2,3之间插入2与3的积6,得到数列2,6,3;第2次,在2,6,3每两个相邻数之间插入它们的积,得到数列2,12,6,18,3;类似地,第3次操作后,得到数列:2,24,12,72,6,108,18,54,3.按上述这样操作11次后,得到的数列记为
,则
的值是()
A.
6
B.
12
C.
18
D.
108
单选题
困难