0
返回首页
1. X市与W市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数n的部分数据如下:
车厢节数
4
7
10
往返次数
16
10
4
(1)
请你根据上表数据,在二个函数模型:①
(k,b为常数,
);②
(a,b,c为常数,
)中,选取一个合适的函数模型,求出的m关于n的函数关系式是
(不写n的范围);
(2)
结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时,一天的设计运营人数
最多(每节车厢载容量设定为常数p).
【考点】
待定系数法求一次函数解析式; 二次函数的最值;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 经研究表明,某市跨河大桥上的车流速度
(单位:千米/时)是车流密度
(单位:辆/千米)的函数,函数图象如图所示.
(1)
当
时,
关于
的函数表达式是______;
(2)
求车流量
(单位:辆/时)与车流密度
之间的函数关系式;(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)
(3)
若车流速度
不低于50千米/时,求当车流密度
为多少时,车流量
达到最大,并求出这一最大值.
综合题
普通
2. 如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(-1,0).
(1)
求二次函数的表达式;
(2)
当y<0时,写出x的取值范围;
(3)
当a≤x≤a+1时,二次函数y=x
2
+bx+c的最小值为2a,求a的值.
综合题
困难
3. 下表是一次函数
,
、
为常数)的自变量
与函数
的对应值:
-2
0
1
3
0
(1)
根据表格,求一次函数的解析式.
(2)
请直接写出
=
.
综合题
普通
1. 如图,在平面直角坐标系中,已知抛物线
的顶点为A,与y轴交于点C,线段
轴,交该抛物线于另一点B.
(1)
求点B的坐标及直线
的解析式:
(2)
当二次函数
的自变量x满足
时,此函数的最大值为p,最小值为q,且
.求m的值:
(3)
平移抛物线
, 使其顶点始终在直线
上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.
综合题
困难
2. 如图1,在平面直角坐标系
中,抛物线
:
经过点
和点
.
(1)
求抛物线
的解析式;
(2)
如图2,作抛物线
, 使它与抛物线
关于原点
成中心对称,请直接写出抛物线
的解析式;
(3)
如图3,将(2)中抛物线
向上平移2个单位,得到抛物线
, 抛物线
与抛物线
相交于
,
两点(点
在点
的左侧).
①求点
和点
的坐标;
②若点
,
分别为抛物线
和抛物线
上
,
之间的动点(点
,
与点
,
不重合),试求四边形
面积的最大值.
综合题
困难
3. 如图,抛物线
与
轴相交于点
、点
, 与
轴相交于点
.
(1)
请直接写出点
,
,
的坐标;
(2)
点
在抛物线上,当
取何值时,
的面积最大?并求出
面积的最大值.
(3)
点
是抛物线上的动点,作
//
交
轴于点
, 是否存在点
, 使得以
、
、
、
为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点
的坐标;若不存在,请说明理由.
综合题
困难