0
返回首页
1. 如图,抛物线
与
轴相交于点
、点
, 与
轴相交于点
.
(1)
请直接写出点
,
,
的坐标;
(2)
点
在抛物线上,当
取何值时,
的面积最大?并求出
面积的最大值.
(3)
点
是抛物线上的动点,作
//
交
轴于点
, 是否存在点
, 使得以
、
、
、
为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点
的坐标;若不存在,请说明理由.
【考点】
待定系数法求一次函数解析式; 二次函数的最值; 二次函数图象与坐标轴的交点问题; 平行四边形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
换一批
1. 已知函数
为常数)的图象经过点
.
(1)
求
满足的关系式;
(2)
设该函数图象的顶点坐标是
, 当
的值变化时,求
关于
的函数解析式;
(3)
设该函数的图象不经过第三象限,当-5
时,函数的最大值与最小值之差为16,求
的值.
综合题
普通
2. 已知函数y=-x
2
+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)
求b,c的值.
(2)
当﹣4≤x≤0时,求y的最大值.
(3)
当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
综合题
普通
3. 某商品的进价为每件40元,在销售过程中发现,每周的销售量
y
(件)与销售单价
x
(元)之间的关系可以近似看作一次函数
,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.
(1)
求
k
,
b
的值;
(2)
求销售该商品每周的利润
w
(元)与销售单价
x
(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.
综合题
普通