求证:
求作:∠AMD,使得点D在边PB上,且∠AMD =2∠P.
作法:
①以点M为圆心,MP长为半径画圆,交PA于另一点C,交PB于点D点;
②作射线MD.
证明:∵P、C、D都在⊙M 上,
∠P为弧CD所对的圆周角,∠CMD为弧CD所对的圆心角,
∴∠P=∠CMD( )(填推理依据).
∴∠AMD=2∠P.
已知:如图,直线 与⊙O相切于 点, , 为圆上不同于 的两点,连接 , , .
求证: .
如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:
①点D为AC的中点;②S△O′OE= S△AOC;③ ;④四边形O′DEO是菱形.其中正确的结论是.(把所有正确的结论的序号都填上)