如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系;
如图2,当点F平移到线段BC的中点时,四边形AFBD是什么特殊四边形?请给出证明;
如图①,求证:BA=BP;
如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求 的值;
如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.
如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处.
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.
要求:
a.在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;
b.三个图中所画的三角形的面积均不相等;
c.点C在格点上.
在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;
在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.