如图1,在△ABC中,AB=AC=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.
操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度a(0°<a<90°),如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
如图(1)在Rt△ABC中,∠C=90°,AB=5cm.BC=a cm,AC=3cm,且a是方程x2﹣(m﹣1)x+m+4=0的根.
如图(2),有一个边长为 的等边三角形DEF从C出发,以1cm/s的速度沿CB方向移动,至△DEF全部进入与△ABC为止,设移动时间为xs,△DEF与△ABC重叠部分面积为y,试求出y与x的函数关系式并注明x的取值范围;
已知:如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P从点B出发,沿BC向点C匀速运动,速度为1cm/s;过点P作PD∥AB,交AC于点D,同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动,连接PQ.设运动时间为t(s)(0<t<2.5),解答下列问题:
如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.
应用:如图2,将△ADE绕点A旋转,请求出 的值;
拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出 的值.