如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2 . 已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:
①当正方形PMNQ与△ABC重叠部分图形是正方形时,求t的取值范围.
②当边MN的中点落在△ABC的边上时,求正方形PMNQ的面积.
如图1,在边长为1的正方形网格中,连接格点 、 和 、 , 与 相交于点 ,求 的值.
方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点 、 ,可得 ,则 ,连接 ,那么 就变换到中 .
问题解决
等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1).
①若BM= ,求x的值;
②求四边形ADPE与△ABC重叠部分的面积S与x之间的函数关系式以及S的最小值;
③连接DE分别与边AB、AC交于点G、H(如图2).当x为何值时,∠BAD=15°?此时,以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由.