0
返回首页
1. 如图,在三棱锥P﹣ABC中,PA垂直于平面ABC,AC⊥BC.求证:BC⊥平面PAC.
【考点】
直线与平面垂直的判定;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
变式训练
拓展培优
真题演练
换一批
1. 已知
的斜边为AB,过点A作PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.求证:
(1)
BC⊥平面PAC;
(2)
PB⊥平面AMN.
解答题
普通
2. 如图,四棱锥
,
,
,
,
为等边三角形,平面
平面
,
为
中点.
(1)
求证:
平面
;
(2)
求二面角
的余弦值.
解答题
普通
3. 如图所示,在三棱锥
中,
平面
,
,
、
分别为线段
、
上的点,且
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求点
到平面
的距离.
解答题
普通
1. α,β,γ为不同的平面,m,n,l为不同的直线,则m⊥β的一个充分条件是( )
A.
B.
C.
D.
单选题
普通
2. 已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )
A.
m∥l
B.
m∥n
C.
n⊥l
D.
m⊥n
单选题
容易
3. 如图,在正方体
中,
P
,
M
,
N
分别为
AB
,
,
的中点,则与平面
垂直的直线可以是( )
A.
B.
C.
D.
单选题
普通
1. 如图,在三棱柱
中,平面
平面
,
为
的中点.
(1)
证明:
平面
;
(2)
求平面
与平面
夹角的余弦值.
解答题
普通
2. 已知两个非零向量
,
, 在空间任取一点
, 作
,
, 则
叫做向量
,
的夹角,记作
.定义
与
的“向量积”为:
是一个向量,它与向量
,
都垂直,它的模
.如图,在四棱锥
中,底面
为矩形,
底面
,
,
为
上一点,
.
(1)
求
的长;
(2)
若
为
的中点,求二面角
的余弦值;
(3)
若
为
上一点,且满足
, 求
.
解答题
普通
3. 如图,边长为2的正方形
中,点E是
的中点,点F是
的中点,将
分别沿
折起,使A、C两点重合于点A
'
, 连接
.
(1)
求证:
;
(2)
求直线
与平面
所成角的正弦值.
解答题
普通
1. 已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )
A.
m∥l
B.
m∥n
C.
n⊥l
D.
m⊥n
单选题
容易
2. 如图,已知
和
都是直角梯形,
,
,
,
,
,
,二面角
的平面角为
.设M,N分别为
的中点.
(Ⅰ)证明:
;
(Ⅱ)求直线
与平面
所成角的正弦值.
解答题
普通
3. 已知正方体
则( )
A.
直线
与
所成的角为
B.
直线
与
所成的角为
C.
直线
与平面
所成的角为
D.
直线
与平面ABCD所成的角为
多选题
普通