0
返回首页
1. 在△ABC中,B=
,BC边上的高等于
BC,则sinA=( )
A.
B.
C.
D.
【考点】
解三角形的实际应用; 三角形中的几何计算;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
普通
基础巩固
能力提升
变式训练
拓展培优
换一批
1. 魏晋南北朝时期,中国数学的测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理,因其第一题为测量海岛的高度和距离,故题为《海岛算经》.受此题启发,某同学依照此法测量郑州市二七纪念塔的高度.如图,点D,G,F在水平线DH上,CD和EF是两个垂直于水平面且等高的测量标杆的高度,称为“表高”测得以下数据(单位:米):前表却行DG=1,表高CD=EF=2,后表却行FH=3,表距DF=61.则塔高AB=( )
A.
60米
B.
61米
C.
62米
D.
63米
单选题
容易
2. 已知
的内角
、
、
所对的边分别为
.若
,则
的面积为( )
A.
B.
1
C.
D.
单选题
容易
3. 在△ABC中,若
,则△ABC的形状是 ( )
A.
等腰三角形
B.
直角三角形
C.
等腰且直角三角形
D.
等边三角形
单选题
容易
1. 如图,
、
两点在河的同侧,且
、
两点均不可到达.现需测
、
两点间的距离,测量者在河对岸选定两点
、
, 测得
, 同时在
、
两点分别测得
,
,
, 则
、
两点间的距离为( )
A.
B.
C.
D.
单选题
普通
2. 魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点
,
,
在水平线
上,
和
是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,
称为“表距”,
和
都称为“表目距”,
与
的差称为“表目距的差”则海岛的高
( )
A.
表高
B.
表高
C.
表距
D.
表距
单选题
普通
3. 湖南省衡阳市的来雁塔,始建于明万历十九年(1591年),因鸿雁南北迁徙时常在境内停留而得名.1983年被湖南省人民政府公布为重点文物保护单位.为测量来雁塔的高度,因地理条件的限制,分别选择
C
点和一建筑物
DE
的楼顶
E
为测量观测点,已知点
A
为塔底,
在水平地面上,来雁塔
AB
和建筑物
DE
均垂直于地面(如图所示).测得
, 在
C
点处测得
E
点的仰角为30°,在
E
点处测得
B
点的仰角为60°,则来雁塔
AB
的高度约为( )(
, 精确到
)
A.
B.
C.
D.
单选题
普通
1. (2021·浙江·高考真题)我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为
, 小正方形的面积为
, 则
.
填空题
普通
2. 海宝塔位于银川市兴庆区,始建于北朝晚期,是一座方形楼阁式砖塔,内有木梯可盘旋登至顶层,极目远眺,巍巍贺兰山,绵绵黄河水,塞上江南景色尽收眼底.如图所示,为了测量海宝塔的高度,某同学(身高173cm)在点
处测得塔顶
的仰角为
, 然后沿点
向塔的正前方走了38m到达点
处,此时测得塔顶
的仰角为
, 据此可估计海宝塔的高度约为
m.(计算结果精确到0.1)
填空题
普通
3. 已知
的内角
,
,
的对边分别为
,
,
, 且
, 若
的面积等于
, 则
的周长的最小值为
.
填空题
困难
1. 在锐角三角形
中,内角
所对的边分别为
.
(1)
求角
的大小;
(2)
若
, 求
的周长的取值范围.
解答题
普通
2. 某自然保护区为研究动物种群的生活习性,设立了两个相距
的观测站A和B,观测人员分别在A,B处观测该动物种群.如图,某一时刻,该动物种群出现在点C处,观测人员从两个观测站分别测得
,
, 经过一段时间后,该动物种群出现在点D处,观测人员从两个观测站分别测得
,
. (注:点A,B,C,D在同一平面内)
(1)
求
的面积;
(2)
求点
之间的距离.
解答题
普通
3. 在锐角
中,角
所对的边分别为
, 且
.
(1)
求角
的大小;
(2)
求
的取值范围.
解答题
普通