0
返回首页
1. 如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP.直线CE与线段AB相交于点F(点F与点A、B不重合)
(1)
求证:△AEP≌△CEP;
(2)
判断CF与AB的位置关系,并说明理由;
(3)
求△AEF的周长。
【考点】
全等三角形的判定与性质; 正方形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
困难
能力提升
真题演练
换一批
1. 在
中,
, 点D(与点
不重合)为射线
上一动点,连接
, 以
为一边且在
的右侧作正方形
.
(1)
如果
. 如图①,且点D在线段
上运动.试判断线段
与
之间的位置关系,并证明你的结论.
(2)
如果
, 如图②,且点D在线段
上运动.(1)中结论是否成立,为什么?
(3)
若正方形
的边
所在直线与线段
所在直线相交于点P,设
,
,
, 求线段
的长.(用含x的式子表示).
综合题
普通
2. 如图,已知正方形ABCD的边长为1,正方形CEFG的面积为
,点E在CD边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为
,且
.
(1)
求线段CE的长;
(2)
若点H为BC边的中点,连结HD,求证:
.
综合题
普通
3. 如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.
(1)
求证:PE=PD;
(2)
连接DE,试判断∠PED的度数,并证明你的结论.
综合题
普通
1.
如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)
如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)
如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.
综合题
困难
2. 如图,边长为
的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=( )
A.
B.
C.
D.
单选题
普通
3. 如图,在正方形
中,
,
分别为
,
的中点,
为对角线
上的一个动点,则下列线段的长等于
最小值的是( )
A.
B.
C.
D.
单选题
普通