①当时,;
②当时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得的x值是或 .
其中正确的是( )
制定加工方案
生产背景
背景1
◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.
◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.
◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.
背景2
每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:
①“风”服装:24元/件;
②“正”服装:48元/件;
“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.
信息整理
现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:
服装种类
加工人数(人)
每人每天加工量(件)
平均每件获利(元)
风
y
2
24
雅
x
1
正
48
探究任务
任务1
探寻变量关系
求x、y之间的数量关系.
任务2
建立数学模型
设该工厂每天的总利润为w元,求w关于x的函数表达式.
任务3
拟定加工方案
制定使每天总利润最大的加工方案.
(1)求和的值;
(2)求点的坐标,并结合图象写出不等式的解集;
(3)点是直线上的一个动点,将点向左平移个单位长度得到点 , 若线段与抛物线只有一个公共点,直接写出点的横坐标的取值范围.
①求该抛物线的函数表达式;
②在直线BC下方的抛物线上,是否存在点 , 使得的面积和的面积比是5:9?若存在,请写出点的坐标;若不存在,请说明理由.
① ;
②函数 在 处的函数值相等;
③函数 的图象与的函数 图象总有两个不同的交点;
④函数 在 内既有最大值又有最小值.