如图1,点C为线段AB上一点,∠A=∠B=90°,AD=BC,BE=AC,连接CD、CE、DE.
如图2,点C为线段AB上一点,∠A=∠B=45°,CD⊥CE.当CD=CE时,求的值.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在中, , D、A、E三点都在直线l上,并且有 , 其中α为任意锐角或钝角.请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过的边、向外作等腰和等腰 , 是边上的高,延长交于点I,求证:I是的中点.
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等简写成“等角对等边”已知:如图,在中,求证: .
甲的方法:证明:作的平分线交于点 .
乙的方法:证明:作于点 .
丙的方法:证明:取中点 , 连接 .
(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;
(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;