0
返回首页
1. 如图,在等边三角形ABC中,点D是BC边的中点,以AD为边作等边三角形ADE.
(1)
求∠CAE的度数;
(2)
取AB边的中点F,连结CF、CE,试证明四边形AFCE是矩形.
【考点】
矩形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若
,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且
,
.
理解与作图:
(1)
在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.
计算与猜想:
(2)
求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?
启发与证明:
(3)
如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.
综合题
普通
1. 如图,平面直角坐标系中,已知点B的坐标为(6,4).
(1)
请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)
(2)
问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.
综合题
普通
2. 如图,四边形
是矩形,E是
边上一点,点F在
的延长线上,且
.
(1)
求证:四边形
是平行四边形;
(2)
连接
,若
,
,
,求四边形
的面积.
综合题
普通
3. 下列说法正确的是( )
A.
对角线互相垂直的四边形是菱形
B.
矩形的对角线互相垂直
C.
一组对边平行的四边形是平行四边形
D.
四边相等的四边形是菱形
单选题
普通