应用:(2)通过不同的方法表示同一个几何体的体积,也可以探求相应的因式分解等式.如图 2 所示 的是棱长为的正方体被分割线分成 8 块.用不同的方法计算这个正方体的体积,则这个式子为 ;
拓展:(3)如图 3,棱长为 x 的实心大正方体切除一个棱长为 y 的小正方体,剩余部分按如图所示的 方式继续切割为甲、乙、丙三个长方体,则甲长方体的体积为 , 乙长方体的体积为 , 丙长方体的体积为 , 甲、乙、丙三个长方体体积之和可表示为 .
根据(2)和(3)中的结论解答下列问题:若图 2 与图 3 中的 x 与 y 的值分别相等,且满足 , , 其中 , 求的值.
①求的值;
②求图中空白部分的面积.
用含 , 的代数式表示 , ;
若 , 求的值.