1. 某校举行围棋比赛,甲、乙、丙三个人通过初赛,进入决赛.已知甲与乙比赛时,甲获胜的概率为 , 甲与丙比赛时,甲获胜的概率为 , 乙与丙比赛时,乙获胜的概率为.
(1) 决赛规则如下:首先通过抽签的形式确定甲、乙两人进行第一局比赛,丙轮空;第一局比赛结束后,胜利者和丙进行比赛,失败者轮空,以此类推,每局比赛的胜利者跟本局比赛轮空者进行下一局比赛,每场比赛胜者积1分,负者积0分,首先累计到2分者获得比赛胜利,比赛结束.假设 , 且每局比赛相互独立.

(i)求乙连胜两局获得最终胜利的概率;

(ii)求比赛结束时乙获胜的概率;

(2) , 假设乙第一局出场,且乙获得了指定首次比赛对手的权利,为获得比赛的胜利,试分析乙的最优指定策略.
【考点】
互斥事件的概率加法公式;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
解答题 困难
能力提升
真题演练
换一批