0
返回首页
1. 在一个三角形中,如果一个角是另一个角的2倍,这样的三角形我们称之为“智慧三角形”.比如:三个内角分别为100°,50°,30°的三角形是“智慧三角形”,如图∠MON=40°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C.
(1)
∠ABO=
(2)
若∠ACB=60°.求证: △AOC为“智慧三角形”
(3)
当△ABC为“智慧三角形”时,请求出∠OAC的度数
【考点】
三角形内角和定理; 三角形的外角性质; 直角三角形的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
换一批
1. “转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.
(1)
请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;
(2)
若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;
(3)
若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)
综合题
困难
2. 如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=72°,∠C=30°.
(1)
求∠BAE的度数;
(2)
求∠DAE的度数。
综合题
普通
3. 如图
(1)
如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C直角顶点X在△ABC内部,若∠A=30︒,则∠ABC+∠ACB=
︒,∠XBC+∠XCB=
︒
(2)
如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过点B、C,直角顶点X还在△ABC内部,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.
综合题
普通