0
返回首页
1. 如图,
P
是锐角∠
MON
内部一点,过
P
作
AB
⊥
ON
, 垂足为
B
, 交
OM
于点
A
, 过
P
作
CD
⊥
O
M
, 垂足
D
, 交
ON
于点
C,
且
AB=CD
.
(1)
求证:△
OAB
≌△
OCD
.
(2)
求证:
P
在∠
MON
的平分线上.
(3)
若
,
DP=
4,求
OC
的长.
【考点】
直角三角形全等的判定-HL; 勾股定理; 三角形全等的判定-AAS;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
证明题
困难
能力提升
换一批
1. 已知:如图,在
中,
于点D,E为
上一点,且
.
(1)
求证:
.
(2)
已知
, 求
的长.
证明题
普通
2. 如图,在Rt△ABC中,L BAC=90°,AB=AC,P为斜边BC上的一点(PB<CP),分别过点B,C作BE⊥AP于点E,CD⊥AP于点D.
(1)
求证:AD= BE.
(2)
若AE=2DE=2,求△ABC的面积.
证明题
普通
3. 如图,
D
是
AB
上一点,
DF
交
AC
于点
E
,
DE=
FE
,
FC
//
AB.
求证:
AE=CE.
证明:∵FC
//
AB,
∴∠A=∠
①
, ∠ADE=∠
②
在△ADE和△CFE中,
∵
∴△
ADE
≌ △
CFE
(
⑤
),
∴
⑥
证明题
普通