①当时,它是矩形;②当时,它是菱形;③当时,它是矩形;④当时,它是正方形.
①四边形AEDF是平行四边形;
②如果∠BAC=90°,那么四边形AEDF是矩形;
③如果AD平分∠BAC,那么四边形AEDF是菱形;
④如果∠BAC=90°,AD平分∠BAC,那么四边形AEDF是正方形.
其中正确的是(只填写序号).
顺次连接任意一个四边形的中点得到一个新四边形,我们称这个新四边形为原四边形的中点四边形 . 数学兴趣小组通过作图、测量,猜想:原四边形的对角线对中点四边形的形状有着决定性作用.
以下从对角线的数量关系和位置关系两个方面展开探究.
【探究一】
原四边形对角线关系
中点四边形形状
不相等、不垂直
平行四边形
如图1,在四边形中,E、F、G、H分别是各边的中点.
求证:中点四边形是平行四边形.
证明:∵E、F、G、H分别是、、、的中点,
∴、分别是和的中位线,
∴ , ( ① )
∴ .
同理可得: .
∴中点四边形是平行四边形.
结论:任意四边形的中点四边形是平行四边形.
菱形
从作图、测量结果得出猜想Ⅰ:原四边形的对角线相等时,中点四边形是菱形.
【探究三】
②
③
④
结论:原四边形对角线时,中点四边形是.
【判定依据】此问用到矩形的判定定理为 .
【判定依据】此问用到菱形的判定定理为 .
【判定依据】此问用到正方形的判定定理为 .
①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是( )