0
返回首页
1. 如图,直线
与抛物线
交于A、B两点(点A在点B的左侧),与抛物线的对称轴交于点D,抛物线与y轴交于点C
, 抛物线的对称轴为直线
.
(1)
求抛物线的函数表达式;
(2)
设点A、B的横坐标分别为s、t,若
, 求
的值;
(3)
设抛物线的顶点为P,当
时,求m的值.
【考点】
三角形全等及其性质; 勾股定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
困难
能力提升
真题演练
换一批
1. 已知抛物线
与
轴交于点
(点
在点
的左侧),与
轴交于点
, 点
为
轴上一动点,过点
作
轴的垂线交抛物线
于点
(
与
不重合).
(1)
求点
的纵坐标(用含
的式子表示);
(2)
当
时,若
, 求抛物线
的纵坐标在
时的取值范围;
(3)
对于
的每一个确定的值,
有最小值
, 若
, 求
的取值范围.
解答题
困难
2. 如图,在平面直角坐标系
中,若抛物线
与x轴交于点A,点B,与y轴交于点C,则称
为抛物线P的“交轴三角形”.
(1)
若抛物线
存在“交轴三角形”.
①k的取值范围为________;
②若
, 则该三角形是________三角形.(填“锐角”“直角”或“钝角”)
(2)
若抛物线
的“交轴三角形”是一个等边三角形,求a,c之间的数量关系.
解答题
困难
3. 在
中,
,
的对边长分别为
a
,
b
,
c
, 设
的面积为
S
, 周长为
l
.
a
,
b
,
c
3,4,5
2
5,12,13
4
p
8,15,17
6
q
(1)
填表:表格中的
,
;
(2)
设
, 观察上表猜想:
(用含有
m
的代数式表示);
(3)
说出(2)中结论成立的理由.
解答题
普通
1. 如图,在矩形
中,过对角线
的中点
O
作
的垂线
,分别交
于点
.
(1)
求证:
;
(2)
若
,连接
,求四边形
的周长.
综合题
普通
2. 如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=
(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
(1)
当m=1时,求一次函数的解析式;
(2)
若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.
综合题
普通
3. 如图,在矩形ABCD中,AB=
BC,点F在BC边的延长线上,点P是线段BC上一点(与点B,C不重合),连接AP并延长,过点C作CG⊥AP,垂足为E.
(1)
若CG为∠DCF的平分线.请判断BP与CP的数量关系,并证明;
(2)
若AB=3,△ABP≌△CEP,求BP的长.
综合题
普通