0
返回首页
1. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马
中,侧棱
底面
ABCD
, 且
, 点
E
是
PC
的中点,连接
DE
、
BD
、
BE
.
(1)
证明:
平面
PBC
.试判断四面体
EBCD
是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(2)
设
H
点是
AD
的中点,若面
EDB
与面
ABCD
所成二面角的大小为
, 求四棱锥
的外接球的表面积
【考点】
球的表面积与体积公式及应用; 球内接多面体; 直线与平面垂直的判定; 正弦定理; 余弦定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 已知正四面体
的内切球的表面积为
.
(1)
求该内切球的半径;
(2)
过该四面体的一条棱以及球心的平面截正四面体
, 求所得截面的面积.
解答题
普通
2. 三维空间中,如果平面与球有且仅有一个公共点,则称这个平面是这个球的切平面.已知在空间直角坐标系
中,球
的半径为
, 记平面
、平面
、平面
分别为
、
、
.
(1)
若棱长为
的正方体、棱长为
的正四面体的内切球均为球
, 求
的值;
(2)
如果在球面上任意一点作切平面
, 记
与
、
、
的交线分别为
、
、
, 求
到
、
、
距离的乘积的最小值(结果用
表示).
解答题
困难
3. 已知长方体
,
, 其外接球的表面积为
, 过
、
、B三点的平面截去长方体的一个角后,得到如图所示的几何体
, 且这个几何体的体积为10.
(1)
求棱
的长:
(2)
求几何体
的表面积.
解答题
普通