0
返回首页
1. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马
中,侧棱
底面
ABCD
, 且
, 点
E
是
PC
的中点,连接
DE
、
BD
、
BE
.
(1)
证明:
平面
PBC
.试判断四面体
EBCD
是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(2)
设
H
点是
AD
的中点,若面
EDB
与面
ABCD
所成二面角的大小为
, 求四棱锥
的外接球的表面积
【考点】
球的表面积与体积公式及应用; 球内接多面体; 直线与平面垂直的判定; 正弦定理; 余弦定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 已知正四面体
的内切球的表面积为
.
(1)
求该内切球的半径;
(2)
过该四面体的一条棱以及球心的平面截正四面体
, 求所得截面的面积.
解答题
普通
2. 三维空间中,如果平面与球有且仅有一个公共点,则称这个平面是这个球的切平面.已知在空间直角坐标系
中,球
的半径为
, 记平面
、平面
、平面
分别为
、
、
.
(1)
若棱长为
的正方体、棱长为
的正四面体的内切球均为球
, 求
的值;
(2)
如果在球面上任意一点作切平面
, 记
与
、
、
的交线分别为
、
、
, 求
到
、
、
距离的乘积的最小值(结果用
表示).
解答题
困难
3. 球面几何学是在球表面上的几何学,也是非欧几何的一个例子.对于半径为R的球
, 过球面上一点
作两条大圆的弧
,
, 它们构成的图形叫做球面角,记作
(或
),其值为二面角
的大小,点
称为球面角的顶点,大圆弧
称为球面角的边.不在同一大圆上的三点
, 可以得到经过这三点中任意两点的大圆的劣弧
, 这三条劣弧组成的图形称为球面
, 这三条劣弧称为球面
的边,
三点称为球面
的顶点;三个球面角
称为球面
的三个内角.
已知球心为
的单位球面上有不同在一个大圆上的三点
.
(1)
球面
的三条边长相等(称为等边球面三角形),若
, 求球面
的内角和;
(2)
类比二面角,我们称从点
出发的三条射线
组成的图形为三面角,记为
.
其中点
称为三面角的顶点,
称为它的棱,
称为它的面角. 若三面角
的三个面角的余弦值分别为
.
(ⅰ)求球面
的三个内角的余弦值;
(ⅱ)求球面
的面积.
解答题
困难