2.
数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时,利用几何直观的方法和面积法获取结论,在解决整式运算问题时经常运用.
![](http://tikupic.21cnjy.com/ct20241o/90/97/9097e63cc6bd51d96c769026f80c20aa.png)
【问题探究】
探究1:如图1所示,大正方形的边长是
, 它是由两个小正方形和两个长方形组成,所以大正方形的面积等于这四个图形的面积之和.根据等积法,我们可以得出结论:![](https://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmfenced+close%3D%22%29%22+open%3D%22%28%22%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3C%2Fmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
探究2:请你根据探究1所使用的等积法,从图2中探究出
的结果.
【形成结论】
(1)探究2中
;
【应用结论】
(2)利用(1)问所得到的结论求解:
已知
,
, 求
的值;
【拓展应用】
(3)在(2)的条件下,求
的值.