问题情境:
为了满足农民的消费需求,国家运用财政和贸易政策为工商企业研发和制造符合农民需求的特色产品进行补助.某电器公司计划用甲、乙两种汽车运送190台家电到农村销售,已知甲种汽车每辆可运送家电20台,乙种汽车每辆可运送家电30台,且规定每辆汽车按规定满载,一共用了8辆汽车运送.
针对这个问题,在《二元一次方程组》这一章的学习时,同学们根据下列条件探索还能求出哪些量.
素材1:如图是一架自制天平,支点固定不变,左侧托盘固定在点处,右侧托盘的支撑点可以在横梁段滑动,已知 , , 左侧托盘放置一个的砝码.
任务1:若右侧托盘放置物体,当天平平衡时,求的长.
素材2:若将右侧托盘上的物体换成一个空矿泉水瓶,在空瓶中加入一定量的水,滑动右侧托盘,当支撑点到点时,天平平衡;若再向瓶中加入等量的水,当点移动到长为时(点在点的右侧),天平恰好平衡.
任务2:求这个矿泉水瓶的质量.
素材3:继续在矿泉水瓶中加水,当加水量是第一次加水量的5倍时,移动右侧支撑点 , 使天平平衡.
任务3:请描述右侧支撑点的移动过程.
温馨提示:根据杠杆原理,天平平衡时:左盘砝码质量右盘物体质量 . (不计托盘和横梁的质量)
(1)试问一根 6m 长的圆钢管有哪些裁剪方法呢?请填写下空(余料作废).
方法①:当只裁剪长为 0.8m 的用料时,最多可剪 根;
方法②:当先剪下 1 根 2.5m 的用料时,余下部分最多能剪 0.8m 长的用料 根;
方法③:当先剪下 2 根 2.5m 的用料时,余下部分最多能剪 0.8m 长的用料 根.
(2)分别用(1)中的方法②和方法③各裁剪多少根 6m 长的钢管,才能刚好得到所需要的相应数量的材料?
(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要 6m 长的钢管与(2) 中根数相同?
问题情境:小明同学在学习二元一次方程组时遇到了这样一个问题:
解方程组: .
设 , , 则原方程组可化为,解关于m,n的方程组,得 ,
所以 , 解方程组,得.