现规定:求若干个相同的有理数(均不等于0)的商的运算叫做除方,比如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2写作2③ , 读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)写作(﹣3)④ , 读作“(﹣3)的圈4次方”,一般地,把(a≠0)写作aⓝ , 读作“a的圈n次方”.
【初步探究】
A:任何非零数的圈2次方都等于1
B:对于任何正整数n , 1ⓝ=1
C:3④=4③
D:负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
①试一试:仿照上面的算式,把下列除方运算直接写成幂的形式:(﹣3)⑤=,()⑥=.
②想一想:请把有理数a(a≠0)的圈n(n≥3)次方写成幂的形式为aⓝ=.
③算一算:=.
规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如 , 等,类比有理数的乘方,我们把记作 , 读作“2的3次商”,记作 , 读作“的4次商”.一般地,我们把n个相除记作 , 读作“a的n次商”.
直接写出结果:;
①任何非零数的2次商都等于1;②对于任何正整数n,;
③;④负数的奇数次商结果是负数,负数的偶数次商结果是正数.
深入思考
我们知道,有理数的减法运算可以转化为加法运算,除法运算能够转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?
例:
;.