【操作】如图1,在矩形中,点M在边上,将矩形纸片沿所在的直线折叠,使点D落在点处,与交于点N.
【猜想】
∵矩形纸片沿所在的直线折叠
∴ ▲
∵四边形是矩形
∴(矩形的对边平行)
∴ ▲ ( )
∴ ▲ ▲ (等量代换)
∴( )
如图2,继续将矩形纸片折叠,使恰好落在直线上,点A落在点处,点B落在点处,折痕为.
①猜想与的数量关系,并说明理由;
②若 , , 求的长.
①当PC=3时,求的值.
②小亮发现PC取不同值时,的值存在一定规律,请猜想该规律: ▲ .
爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
如图1,当tan∠PAB=1,c=4 时,a=,b=;
如图2,当∠PAB=30°,c=2时,a=,b=;
请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
【拓展证明】
如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.