①若和是该二次函数图象上的点,比较和的大小;
②设一次函数 , 当函数的图象经过点时,探索与之间的数量关系,并加以推理.
如何调整蔬菜大棚的结构?
素材1
我国的大棚(如图1)种植技术已十分成熟,一块土地上有一个蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在墙体上,另一端固定在墙体上,其横截面有2根支架 , 相关数据如图2所示,其中 , .
素材2
已知大棚有200根长为的支架和200根长为的支架,为增加棚内空间,拟将图2中棚顶向上调整,支架总数不变,对应支架的长度变化如图3所示,调整后C与E上升相同的高度,增加的支架单价为60元/米(接口忽略不计),现有改造经费32000元.
问题解决
任务1
确定大棚形状
在图2中以点O为原点,所在直线为y轴建立平面直角坐标系,求抛物线的函数表达式.
任务2
尝试改造方案
当米,只考虑经费情况下,请通过计算说明能否完成改造.
任务3
拟定最优方案
只考虑经费情况下,求出的最大值.
①如图1,若点 在第三象限,且 ,求点 的坐标;
②直线 交直线 于点 ,当点 关于直线 的对称点 落在 轴上时,求四边形 的周长.