行星名称
地球
火星
木星
土星
天王星
海王星
轨道半径
1.0
1.5
5.2
9.5
19
30
则相邻两次“冲日”时间间隔约为( )
轨道半径()
①在P点进行变轨操作,可使卫星由近地轨道Ⅰ进入椭圆轨道Ⅱ。卫星在椭圆轨道Ⅱ的近地点P的速度为 , 在远地点D的速度为 , 远地点D到地心的距离为r。请你选择合适的方法计算的数值;
②由开普勒定律可知:所有行星绕太阳运动的轨道都是椭圆,轨道半长轴的三次方跟它的公转周期的二次方的比值k都相等。卫星绕地球运行也遵从该规律,请你选择合适的轨道模型,根据牛顿运动定律推导卫星绕地球运行的k值表达式,并说明k值由什么决定?
①已知取无限远处为引力势能零点,间距为r、质量分别为和的两质点组成的系统具有的引力势能可表示为: , 式中G为引力常量且大小已知。已知地球质量为M、半径为R,在如图2所示的坐标系中,纵轴表示引力势能,横轴表示质量为m的探测器到地心的距离r()。请在该坐标系中定性画出地球与探测器组成的系统具有的引力势能函数曲线。静置于地面处的该探测器,至少需要获得多大速度(相对于地心,不考虑地球的自转和空气阻力及其他天体的影响),才能摆脱地球引力的束缚;
②如图3所示,请利用开普勒行星运动定律计算,判断当火星运行到哪个位置(A、B、C、D、E、F、G)附近时,在地球公转轨道上H点的探测器开始发射(即瞬间加速,加速时间可忽略),此后探测器仅在太阳引力作用下,可经霍曼转移轨道在I点到达火星。(可能需要用到的数据: , )