0
返回首页
1. 在侧棱长为
, 底面边长为2的正三棱锥P-ABC中,E,F分别为AB,BC的中点,M,N分别为PE和平面PAF上的动点,则
的最小值为
.
【考点】
直线与平面垂直的判定;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
普通
变式训练
拓展培优
真题演练
换一批
1. 如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足
的是( )
A.
B.
C.
D.
多选题
容易
2. 在正方体
中,点
在线段
上,点
为线段
的中点,记平面
平面
, 则下列说法一定正确的是( )
A.
平面
B.
平面
C.
平面
D.
平面
单选题
普通
3. 如图,在下列四个正方体中,
为正方体的两个顶点,
为所在棱的中点,则在这四个正方体中,直线
与平面
不垂直的是( )
A.
B.
C.
D.
单选题
普通
1. 已知两个非零向量
,
, 在空间任取一点
, 作
,
, 则
叫做向量
,
的夹角,记作
.定义
与
的“向量积”为:
是一个向量,它与向量
,
都垂直,它的模
.如图,在四棱锥
中,底面
为矩形,
底面
,
,
为
上一点,
.
(1)
求
的长;
(2)
若
为
的中点,求二面角
的余弦值;
(3)
若
为
上一点,且满足
, 求
.
解答题
普通
2. 如图,边长为2的正方形
中,点E是
的中点,点F是
的中点,将
分别沿
折起,使A、C两点重合于点A
'
, 连接
.
(1)
求证:
;
(2)
求直线
与平面
所成角的正弦值.
解答题
普通
3. 如图,在四棱锥
中,平面
平面
,
,
,
,
,
,
.
(1)
求证:
平面
.
(2)
求直线
与平面
所成角的正弦值.
(3)
在棱
上是否存在点
, 使得
平面
?若存在,求出
的值;若不存在,请说明理由.
解答题
普通
1. 已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )
A.
m∥l
B.
m∥n
C.
n⊥l
D.
m⊥n
单选题
容易
2. 如图,已知
和
都是直角梯形,
,
,
,
,
,
,二面角
的平面角为
.设M,N分别为
的中点.
(Ⅰ)证明:
;
(Ⅱ)求直线
与平面
所成角的正弦值.
解答题
普通
3. 已知正方体
则( )
A.
直线
与
所成的角为
B.
直线
与
所成的角为
C.
直线
与平面
所成的角为
D.
直线
与平面ABCD所成的角为
多选题
普通