1. 在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).

(1) 求抛物线L1的函数解析式,并直接写出顶点D的坐标;
(2) 如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
(3) 若将抛物线L1绕点B旋转180°得抛物线L2 , 其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
【考点】
二次函数图象的几何变换; 二次函数的最值; 待定系数法求二次函数解析式; 等腰三角形的性质; 两条直线被一组平行线所截,所得的对应线段成比例;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
换一批