1. 如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.

(1) 求此抛物线对应的函数表达式;
(2) 在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点在x轴上,MN与矩形的一边平行且相等.栅栏总长l为图中粗线段 , MN长度之和.请解决以下问题:

(ⅰ)修建一个“”型栅栏,如图2,点在抛物线AED上.设点的横坐标为 , 求栅栏总长l与m之间的函数表达式和l的最大值;

(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形面积的最大值,及取最大值时点的横坐标的取值范围(右侧).

【考点】
待定系数法求二次函数解析式; 二次函数的实际应用-拱桥问题;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
换一批