0
返回首页
1. 袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是
,得到黄球或绿球的概率是
,试求:
(1)
从中任取一球,得到黑球、黄球、绿球的概率各是多少?
(2)
从中任取两个球,得到的两个球颜色不相同的概率是多少?
【考点】
互斥事件的概率加法公式;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
真题演练
换一批
1. 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)
30
25
10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
解答题
普通
2. 某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为
、
、
,已知三个社团他都能进入的概率为
,至少进入一个社团的概率为
,且
.
(1)
求
与
的值;
(2)
该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.
解答题
普通
3. 甲、乙两人进行围棋比赛,记事件A为“甲获得比赛胜利或者平局”,事件B为“乙获得比赛的胜利或者平局”,已知
.
(1)
求甲获得比赛胜利的概率;
(2)
求甲、乙两人获得平局的概率.
解答题
普通
1. 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)
求甲学校获得冠军的概率;
(2)
用X表示乙学校的总得分,求X的分布列与期望.
解答题
容易
2. 现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为
,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为
,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(1)
求该射手恰好命中一次得的概率;
(2)
求该射手的总得分X的分布列及数学期望EX.
解答题
普通
3. 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为
,乙每次投篮投中的概率为
,且各次投篮互不影响.
(1)
求甲获胜的概率;
(2)
求投篮结束时甲的投篮次数ξ的分布列与期望.
解答题
普通