0
返回首页
1. 已知点
,点P是圆
上的任意一点,设Q为该圆的圆心,并且线段PA的垂直平分线与直线PQ交于点E.
(1)
求点E的轨迹方程;
(2)
已知M,N两点的坐标分别为(﹣2,0),(2,0),点T是直线x=4上的一个动点,且直线TM,TN分别交(1)中点E的轨迹于C,D两点(M,N,C,D四点互不相同),证明:直线CD恒过一定点,并求出该定点坐标.
【考点】
直线和圆的方程的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
困难
能力提升
真题演练
换一批
1. 在平面直角坐标系
中,已知点
,
, C是线段
的中点,P是平面内的一动点,且满足
, 记点P的运动轨迹为曲线E.
(1)
求曲线E的方程;
(2)
过点B的直线l与曲线E交于M,N两点,若△
的面积是△
的面积的3倍,求直线l的方程.
解答题
普通
2. 在平面直角坐标系Oxy中,点M是以原点O为圆心,半径为a的圆上的一个动点.以原点O为圆心,半径为
的圆与线段OM交于点N,作
轴于点D,作
于点Q.
(1)
令
, 若
,
,
, 求点Q的坐标;
(2)
若点Q的轨迹为曲线C,求曲线C的方程;
(3)
设(2)中的曲线C与x轴的正半轴交于点A,与y轴的正负半轴分别交于点
,
, 若点E、F分别满足
,
, 设直线
和
的交点为K,设直线
:
及点
, (其中
),证明:点K到点H的距离与点K到直线l的距离之比为定值
.
解答题
困难
3. 已知圆E:(x+
)
2
+y
2
=16,点F(
,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(Ⅰ)求动点Q的轨迹E的方程;
(Ⅱ)直线l过点(1,1),且与轨迹Γ交于A,B两点,点M满足
=
,点O为坐标原点,延长线段OM与轨迹Γ交于点R,四边形OARB能否为平行四边形?若能,求出此时直线l的方程,若不能,说明理由.
解答题
普通
1. 设直线l:y=kx+b(k>0),圆C
1
:x
2
+y
2
=1,C
2
:(x﹣4)
2
+y
2
=1,若直线l与C
1
, C
2
都相切,则k=
;b=
.
填空题
普通
2. 已知曲线
C
:
y
=
,
D
为直线
y
=
上的动点,过
D
作
C
的两条切线,切点分别为
A
,
B
.
(1)
证明:直线
AB
过定点:
(2)
若以
E
(0,
)为圆心的圆与直线
AB
相切,且切点为线段
AB
的中点,求该圆的方程.
解答题
困难
3. 在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x
2
+y
2
=50上.若
≤20,则点P的横坐标的取值范围是
.
填空题
普通