0
返回首页
1. 如图,点
O
在直线
上,
,则
的度数是
.
【考点】
角的运算; 余角、补角及其性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 如图所示,若入射光线与平面镜成
夹角,且入射光线与反射光线与平面镜所成的角度相等,则入射光线与反射光线的夹角的度数为
.
填空题
容易
2. 已知一个角是
, 则它的余角是
.
填空题
容易
3. 已知一个角的补角等于这个角的余角的3倍,那么这个角的度数是
.
填空题
容易
1. 如图是某地球仪的主视图,
、
、
分别是赤道平面、地轴、黄道平面,我们知道地球仪的地球是倾斜的,地球仪的地球姿态是公转时的姿态,地球公转时,地轴并不是垂直于黄道平面(地球公转轨道平面),所以地球是斜着身子进行公转的,就产生了黄赤交角,其度数为
, 地球仪上地轴的倾斜角度与黄赤交角是互余的,所以地球仪上地轴的倾斜角
等于
.
填空题
普通
2. 一副三角板按如图所示放置,点A在
上,点F在
上,若
, 则
°.
填空题
普通
3. 如图,
, 则
的度数为
.
填空题
普通
1. 如图,一副三角板(直角顶点重合)摆放在桌面上,若
, 则
等于( )
A.
B.
C.
D.
单选题
容易
2. 依据下列各角所标数据,其中没有余角的是( ).
A.
B.
C.
D.
单选题
容易
3. 下图中用量角器测得
的度数是( )
A.
B.
C.
D.
单选题
容易
1.
图1
图2
(1)
如图1,已知
E是BC的中点,
①求 BC的长.
②求 DE的长.
(2)
如图2,O为直线AB 上的一点,∠AOC=48°,OD平分∠AOC,∠DOE=90°.
①求∠BOD的度数.
②OE 是∠BOC 的平分线吗? 为什么?
解答题
普通
2. 如图,点O在直线AB 上,∠BOD 与∠COD互补,∠BOC=n∠EOC.
(1)
若∠AOD=24°,n=3,求∠DOE的度数.
(2)
若∠DOE=90°,求 n的值.
(3)
若n=4,设∠AOD=α,求∠DOE 的度数(用含α的代数式表示∠DOE的度数).
解答题
普通
3. 以直线
上一点
为端点作射线
, 使
, 将一个直角三角板的直角顶点放在
处,即
.
(1)
如上图
, 若直角三角板
的一边
放在射线
上,则
_______;
(2)
如上图
, 将直角三角板
绕点
顺时针转动到某个位置,
①若
恰好平分
, 则
_______;
②若
在
内部,请直接写出
与
有怎样的数量关系;
(3)
将直角三角板
绕点
顺时针转动(
与
重合时为停止)的过程中,恰好有
, 求此时
的度数.
解答题
普通
1. 如果一个角的度数比它的补角的度数2倍多30°,那么这个角的度数是( )
A.
50°
B.
70°
C.
130°
D.
160°
单选题
普通