1.

在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.

(1) 如图1,当点A的横坐标为时,矩形AOBC是正方形;

(2) 如图2,当点A的横坐标为- 时,

①求点B的坐标;

②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=﹣x2 , 试判断抛物线y=﹣x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.

【考点】
待定系数法求一次函数解析式; 待定系数法求二次函数解析式; 全等三角形的判定与性质; 正方形的性质; 相似三角形的判定与性质;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
换一批