如图,已知矩形ABCD中,AB=4cm,BC=6cm,动点P从点C开始,以1cm/s的速度在BC的延长线上向右匀速运动,连接AP交CD边于点E,把射线AP沿直线AD翻折,交CD的延长线于点Q,设点P的运动时间为t.
如图①,求证:BA=BP;
如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求 的值;
如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.
如图,点D双曲线上,AD垂直x轴,垂足为A,点C在AD上,CB平行于x轴交曲线于点B,直线AB与y轴交于点F,已知AC:AD=1:3,点C的坐标为(2,2).
如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出S△ABC与S四边形AFBD的关系;
如图2,当点F平移到线段BC的中点时,四边形AFBD是什么特殊四边形?请给出证明;
要求:
a.在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;
b.三个图中所画的三角形的面积均不相等;
c.点C在格点上.