在平面直角坐标系中,△ABC的顶点坐标A(﹣4,1),B(﹣2,1),C(﹣2,3)
(1)作△ABC关于y轴的对称图形△A1B1C1;
(2)将△ABC向下平移4个单位长度,作出平移后的△A2B2C2;
(3)求四边形AA2B2C的面积.
①将△ABC向右平移2个单位长度,作出平移后的△A1B1C1 , 并写出△A1B1C1各顶点的坐标.
②若将△ABC绕点(-1,0)顺时针旋转180°后得到△A2B2C2 , 并写出△A2B2C2各顶点的坐标.
③观察△A1B1C1和△A2B2C2 , 它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由.
①画出△ABC关于y轴对称的△A1B1C1 , 并写出点B的对应点B1的坐标;
②画出△ABC向下平移3个单位的△A2B2C2 , 并写出点C的对应点C2的坐标.
线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);
将平行四边形分割成两个图形,图1、图2中的分法各不相同,但都要求其中一个是轴对称图形.
如图,在每个小正方形的边长为1的网格中,点A、B、C、D均在格点上,点P是直线CD上的点连BP,点A′是点A关于直线BP的对称点
如图是建有平面直角坐标系的正方形网格,请按下列要求操作:
(1)画△ABC,使A,B,C三点的坐标分别为(3,1),(4,﹣1),(2,﹣2);
(2)画△A′B′C′,使△A′B′C′与△ABC关于y轴对称,连接AA′,BB′.并指出四边形AA′B′B是何种特殊的四边形?
在6×6方格中,将图①中的图形N平移后位置如图②所示,则图形N的平移方法中,正确的是 图① 图②
①将△ABC向上平移4个单位长度得到△A1B1C1 , 请画出△A1B1C1;
②请画出与△ABC关于y轴对称的△A2B2C2;
③请写出A1、A2的坐标.
如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3 .
(1)△ABC与△A1B1C1的位似比等于 ;
(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;
(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?
(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为 .
如图,在平面直角坐标系中,线段AB的两个端点是A(﹣5,1),B(﹣2,3),线段CD的两个端点是C(﹣5,﹣1),D(﹣2,﹣3).
(1)线段AB与线段CD关于直线对称,则对称轴是 ;
(2)平移线段AB得到线段A1B1 , 若点A的对应点A1的坐标为(1,2),画出平移后的线段A1B1 , 并写出点B1的坐标为 .