对称性: ①矩形是一个轴对称图形, 它至少有条对称轴.
②矩形是中心对称图形, 它的对称中心是的交点.
定理: ①矩形的四个角都是直角.
②矩形的对角线互相平分且相等.(3)判定:
①定义法.
②有三个角是直角的四边形是矩形.
③对角线相等的平行四边形是矩形.
④对角线相等且互相平分的四边形是矩形.
(4)拓展: ①矩形的两条对角线把矩形分成四个面积相等的等腰三角形.
②矩形的面积等于两邻边的积.
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB=k AE,AC=k AF,试探究HE与HF之间的数量关系,并说明理由.
①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为( )