1. 我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.

(1) 特例感知:

在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.

①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;

②如图3,当∠BAC=90°,BC=8时,则AD长为

(2) 猜想论证:

在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.

【考点】
全等三角形的判定与性质; 等边三角形的判定与性质;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
综合题 困难
能力提升
真题演练
换一批