0
返回首页
1. 如图
(1)
如图1,△ABC是等边三角形,点D为BC边上的一动点(点D不与B,C重合),以AD为边在AD右侧作等边△ADE,连接CE,线段BD与CE的数量关系是
,∠ACE=
°.
(2)
如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B,C重合),以AD为边作等腰直角三角形ADE,∠DAE=90°,连接CE,请求解下列问题并说明理由:
①∠DCE的度数;
②线段BD,CD,DE之间的数量关系;
(3)
如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰直角△ADE,∠DAE=90°,连接CE,BE,若BE=10,BC=6,请直接写出DE
2
的值.
【考点】
等腰三角形的判定与性质; 勾股定理; 三角形全等的判定-SAS;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
换一批
1. 在
中,
,
,
为边
延长线上一点,连接
.
(1)
如图1,当
时,求证:
;
(2)
如图2,当
时,求证:
;、
(3)
如图3,当
时,求证:
.
综合题
困难
2. 如图:点E、F在BC上,
,
,
,AF与DE交于点G.过点G作
,垂足为H.
(1)
求证:
(2)
求证:
综合题
普通
3. 我们新定义一类三角形:有两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如,某三角形的三边长分别是2,
,因为
=2
, 所以这个三角形是奇异三角形
(1)
若△ABC的三边长分别是3,4和
,判断此三角形是否为奇异三角形,请说明理由.
(2)
若Rt△ABC是奇异三角形,直角边分别为a,b,斜边为c,请探究a和b满足的数量关系式.
综合题
普通