0
返回首页
1. 在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有
;若△ABC为锐角三角形时,小明猜想:
,理由如下:如图2,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,
,在Rt△ADB中,
,∴
.
∵a>0,x>0,∴2ax>0,∴
,∴当△ABC为锐角三角形时
.
所以小明的猜想是正确.
(1)
请你猜想,当△ABC为钝角三角形时,
与
的大小关系.
(2)
温馨提示:在图3中,作BC边上的高.
(3)
证明你猜想的结论是否正确.
【考点】
勾股定理的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
作图题
普通
能力提升
真题演练
换一批
1. 如图
(1)
如图1,在3×3的方格中,正方形ABCD,EFGH的边长均为1.求出正方形ABCD的对角线AC的长,并将正方形ABCD,EFGH剪拼成一个大正方形,在图2中画出示意图.
(2)
如图3,有5个小正方形(阴影部分),能剪拼成一个大正方形吗?若能,求出大正方形的边长;若不能,请说明理由.
作图题
普通
2. 如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点。
(1)
在图1中以格点为顶点画一个面积为5的正方形;
(2)
在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,
,
作图题
普通
1. 如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为
海里.
(1)
求观测点B与C点之间的距离;
(2)
有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.
综合题
普通
2. 如图,码头A,B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C在海岛O的北偏东75°方向上,码头A,B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两个码头物资装船所用的时间相同,参考数据:
≈1.4,
≈1.7)
解答题
普通
3. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是
(结果用含m的式子表示).
填空题
普通