0
返回首页
1. 在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,
(1)
求高台A比矮台B高多少米?
(2)
求旗杆的高度OM;
(3)
玛丽在荡绳索过程中离地面的最低点的高度MN.
【考点】
全等三角形的判定与性质; 勾股定理的应用;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
综合题
普通
能力提升
真题演练
换一批
1. 如图,一只小鸟旋停在空中
点,
点到地面的高度
米,
点到地面
点(
,
两点处于同一水平面)的距离
米.
(1)
求出
的长度;
(2)
若小鸟竖直下降到达
点(
点在线段
上),此时小鸟到地面
点的距离与下降的距离相同,求小鸟下降的距离.
综合题
普通
2. 如图,A、B是公路l同侧的两个村庄,A村到公路l的距离
, B村到公路l的距离
, 且
. 为方便村民出行,计划在公路边新建一个公交站点P,要求该站到村庄A、B的距离相等.请求出点P与点C之间的距离.
综合题
普通
3. 中国机器人创意大赛于2014年7月15日在哈尔滨开幕.如图是一参赛队员设计的机器人比赛时行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问机器人从点A到点B之间的距离是多少?
综合题
普通
1.
如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)
如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)
如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.
综合题
困难
2. 已知正方形
的面积
是为正方形一边
在从
到
方向的延长线上的一点,若
,连接
,与正方形另外一边
交于点
,连接
并延长,与线段
交于点
,则
的长为
.
填空题
普通
3. 如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为( )
A.
B.
C.
D.
单选题
困难