0
返回首页
1. 如图,抛物线
经过点
.
(1)
求该抛物线顶点P的坐标
(2)
求该抛物线与x轴的交点A,B的坐标;
(3)
平移该二次函数的图象,使点A恰好落在点C的位置上,直接写出平移后抛物线的解析式.
【考点】
二次函数图象的几何变换; 待定系数法求二次函数解析式; 二次函数图象与坐标轴的交点问题; 二次函数y=ax²+bx+c与二次函数y=a(x-h)²+k的转化;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
容易
能力提升
换一批
1. 在直角坐标平面内,二次函数图象的顶点为
, 且过点
.
(1)
求该二次函数的解析式;
(2)
将该二次函数图象向右平移几个单位,可使平移后所得图像经过点
?并直接写出平移后所得图像与x轴的另一个交点的坐标.
解答题
普通
2. 已知抛物线
经过点
, 与y轴交于点
.
(1)
求抛物线
的解析式.
(2)
平移抛物线
得到新抛物线
. 新抛物线
与x轴、y轴都只有一个交点,分别为点
.
①求
两点坐标.
②在抛物线
上有一动点R,使得
平行于
的一边,求出点R的坐标.
解答题
普通
3. 在平面直角坐标系中,抛物线
经过点
.
(1)
求该抛物线的函数表达式.
(2)
将该抛物线左右平移,若平移一次后的抛物线经过原点,试写出平移方案.
解答题
普通