0
返回首页
1. 如图,边长为1的正方形
绕点
逆时针旋转30°到正方形
, 图中的阴影部分的面积为
.
【考点】
正方形的性质; 旋转的性质;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
填空题
普通
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 已知正方形
的对角线长为
, 则正方形
的面积为
.
填空题
容易
2. 如图,将
绕点
逆时针旋转两次得到
, 每次旋转的角度都是
. 若
, 则
.
填空题
容易
3. 如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为
度.
填空题
容易
1. 如图所示,P是正方形ABCD 内一点,将△ABP绕点B按顺时针方向旋转能与△CBP'重合,若PB=3,则PP'=
填空题
普通
2. 如图,正方形
, 边长
, 对角线
相交于点O,将直角三角板的直角顶点放在点O处,三角板两边足够长,与
交于E、F两点,当三角板绕点O旋转时,线段
的最小值为
.
填空题
普通
3. 如图,正方形
的边长为1,将其绕顶点C按逆时针方向旋转一定角度到
位置,使得点B落在对角线
上,则阴影部分的面积是
.
填空题
困难
1. 如图,正方形
的边长为5,两边
、
分别在x轴、y轴上,
, 以C为中心,把
旋转
, 则旋转后点D的对应点
的坐标是( )
A.
B.
C.
或
D.
或
单选题
容易
2. 把边长为1的正方形
绕点
逆时针旋转
得到正方形
, 边
与
交于点
, 则四边形
的面积为( )
A.
2
B.
C.
D.
单选题
普通
3. 如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,求:
(1)指出旋转中心和旋转角度;
(2)求DE的长度;
(3)BE与DF的位置关系如何?
解答题
普通
1. 如图,E是正方形
的边
上一点,以点A为中心,把
绕点A逆时针旋转
得到
, 连接
(1)
求
的度数;
(2)
若
求
的长.
解答题
普通
2. 在平面直角坐标系
中,对于点
, 点
和直线
, 点
关于
的对称点为点
, 点
是直线
上一点.将线段
绕点
逆时针旋转
得到
, 如果线段
与直线
有交点,称点
是点
关于直线
和点
的“旋交点”.
(1)
若点A的坐标为
, 在点
,
,
中,是点A关于x轴和点B的“旋交点”的是
;
(2)
若点
的坐标是
, 点
、
都在直线
上,点
是点
关于
轴和点
的“旋交点”,求点
的坐标;
(3)
点
在以
为对角线交点,边长为2的正方形
(正方形的边与坐标轴平行)上,直线
, 若正方形
上存在点
是点
关于直线
和点
的“旋交点”,直接写出
的取值范围.
解答题
普通
3. 教材中有这样一道题:如图1,四边形
是正方形,
是
上的任意一点,
于点
,
, 且交
于点
. 求证:
.
小明通过证明
解决了问题,在此基础上他进一步提出了以下以下回题,请你解答.
(1)
若图1中的点
为
延长线上一点,其余条件不变,如图2所示,猜想此时
,
,
之间的数量关系,并证明你的结论.
(2)
将图1中的
绕点
逆时针旋转,使得
与
重合,记此时点
的对应点为点
, 如图3所示,若正方形的边长为3,求
的长度.
证明题
普通
1. 如图,正方形
的边长为
, 将正方形
绕原点O顺时针旋转45°,则点B的对应点
的坐标为( )
A.
B.
C.
D.
单选题
普通
2. 如图,在直角坐标系中,边长为2个单位长度的正方形
绕原点O逆时针旋转
, 再沿y轴方向向上平移1个单位长度,则点
的坐标为
.
填空题
普通
3. 如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心将
绕点D顺时针旋转
与
恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若
, 则
.
填空题
困难