.
解:设 , ,
则 , ,
所以 .
请参照上述方法解决下列问题:若 , 求的值.
抛物线上的任意一点都具有如下性质:抛物线上任意一点到抛物线对称轴上一点的距离和到垂直于抛物线对称轴的一条直线的距离相等.
例如:已知抛物线 , 点 , 直线 , 抛物线上一点 .
作于点 , 连结 .
则 , .
点叫做抛物线的焦点,直线叫做抛物线的准线.
抛物线上两点连成的线段叫做抛物线的弦,过焦点的弦叫做焦点弦.与抛物线对称轴垂直的焦点弦叫做通径.
【解决问题】
请你仿照中的方法,解决以下问题:
我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式的最小值.方法如下:
∵ , 由 , 得;
∴代数式的最小值是4.
(1)仿照上述方法求代数式的最小值.
(2)代数式有最大值还是最小值?请用配方法求出这个最值.