0
返回首页
1. 已知抛物线:
.
(1)
配方后,解析式为
(2)
抛物线的对称轴为
(3)
顶点坐标为
(4)
有最
(填“大”或“小”)值,最值是
(5)
函数图象与x轴的交点坐标为
(6)
函数图象与y轴的交点坐标为
.
【考点】
二次函数图象与坐标轴的交点问题; 二次函数y=a(x-h)²+k的图象; 二次函数y=a(x-h)²+k的性质; 二次函数y=ax²+bx+c与二次函数y=a(x-h)²+k的转化;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
换一批
1. 已知函数y=(mx-3)(x-1)(m是常数).求证:不论m为何值,该函数的图象都经过x轴上的一个定点.
解答题
普通
2. 已知二次函数
(
为常数,
的图象经过点
.
(1)
求
的值.
(2)
判断二次函数
的图象与
轴交点的个数,并说明理由.
解答题
普通
3. 抛物线
交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线
交y轴于点P.
(1)
直接写出A,B两点的坐标;
(2)
如图①,当
时,在抛物线上存在点D(异于点B),使B,D两点到
的距离相等,求出所有满足条件的点D的横坐标;
(3)
如图②,直线
交抛物线于另一点E,连接
交y轴于点F,点C的横坐标为m,求
的值(用含m的式子表示).
解答题
困难