台灯作为一种照明工具,适合于书桌、床头等需要局部照明的地方,它能够集中光线,使得周围环境适合于阅读、学习或工作,对于保护眼睛健康也具有重要意义.如图1是一盖可折叠台灯.图2、图3是其平面示意图,底座MN位于水平位置,支架、为固定支撑杆,支架可绕点旋转,从而调节灯光照射方向.已知灯体顶角 , 的平分线始终与垂直.
如图1,一束光线射到平面镜上,被反射后的光线为 , 则入射光线、反射光线与平面镜所夹的锐角 .
如图2,有一口井,已知入射光线与水平线的夹角为 , 现放置平面镜 , 可使反射光线正好垂直照射到井底(即射线),与水平线的夹角的度数为.
如图3,有两块平面镜 , 且 , 入射光线经过两次反射,得到反射光线 . 由以上光的反射定律,可知入射角与反射角相等,进而可以推得他们的余角也相等,即: . 在这样的条件下,求证: .
两块平面镜 , 且 , 入射光线经过两次反射,得到反射光线 . 如图4,光线与相交于点 , 则的度数是多少?(用含的式子表示)(三角形内角和)
【探究】如图②, , 点P在射线上运动, , ,
(1)当点P在线段上运动时,试探究 , , 之间的数量关系.
(2)当点P在线段C,D两点外侧运动时(点P与点C,D,O三点不重合),直接写出 , , 之间的数量关系为______.