0
返回首页
1. 如图,在
中,
,
,
,
为斜边
的中线.点
从点
出发,沿
以每秒5个单位的速度向终点
运动,过点
作
于
,
于
, 得到四边形
,
与四边形
的一边交于点
, 连结
. 设点
的运动时间为
秒.
(1)
求线段
的长;(用含
的代数式表示)
(2)
当四边形
是正方形时,求
的值;
(3)
当
将四边形
的面积分为
两部分时,求
的值;
(4)
作点
关于直线
的对称点
, 当点
落在四边形
内部时,直接写出
的取值范围.
【考点】
勾股定理; 菱形的判定与性质; 矩形的判定与性质; 解直角三角形;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
困难
能力提升
换一批
1. 已知抛物线
与
轴交于点
(点
在点
的左侧),与
轴交于点
, 点
为
轴上一动点,过点
作
轴的垂线交抛物线
于点
(
与
不重合).
(1)
求点
的纵坐标(用含
的式子表示);
(2)
当
时,若
, 求抛物线
的纵坐标在
时的取值范围;
(3)
对于
的每一个确定的值,
有最小值
, 若
, 求
的取值范围.
解答题
困难
2. 如图,在平面直角坐标系中,⊙
与
轴的正半轴交于
两点,与
轴的正半轴相切于点
, 连接
, 已知⊙
半径为2,
, 双曲线
经过圆心
.
(1)求双曲线
的解析式;(2)求直线
的解析式.
解答题
普通
3. 如图,在平面直角坐标系
中,若抛物线
与x轴交于点A,点B,与y轴交于点C,则称
为抛物线P的“交轴三角形”.
(1)
若抛物线
存在“交轴三角形”.
①k的取值范围为________;
②若
, 则该三角形是________三角形.(填“锐角”“直角”或“钝角”)
(2)
若抛物线
的“交轴三角形”是一个等边三角形,求a,c之间的数量关系.
解答题
困难