1. 某篮球俱乐部由篮球Ⅰ队和Ⅱ队组成.Ⅰ队球员水平相对较高,代表俱乐部参加高级别赛事;Ⅱ队是Ⅰ队的储备队,由具有潜力的运动员组成.为考察Ⅰ队的明星队员甲对球队的贡献,教练对近两年甲参加过的60场与俱乐部外球队的比赛进行统计:甲在前锋位置出场12次,其中球队获胜6次;中锋位置出场24次,其中球队获胜16次;后卫位置出场24次,其中球队获胜18次.用该样本的频率估计概率,则:
(1) 甲参加比赛时,求Ⅰ队在某场与俱乐部外球队比赛中获胜的概率;
(2) 为备战小组赛,Ⅰ队和Ⅱ队进行10场热身赛,比赛没有平局,获胜得1分,失败得0分.已知Ⅰ队在每场比赛中获胜的概率是p),若比赛最有可能的比分是7∶3,求P的取值范围;
(3) 现由Ⅰ队代表俱乐部出战小组赛,小组共6支球队,进行单循环赛(任意两支队伍间均进行一场比赛),若每场比赛均派甲上场,在已知Ⅰ队至少获胜3场的条件下,记其获胜的场数为X , 求X的分布列和数学期望.
【考点】
n次独立重复试验中恰好发生k次的概率; 离散型随机变量的期望与方差; 条件概率与独立事件;
【答案】

您现在未登录,无法查看试题答案与解析。 登录
解答题 困难
能力提升
换一批