0
返回首页
1. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,根据题意列方程组正确的是( )
A.
B.
C.
D.
【考点】
列二元一次方程组;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
单选题
容易
基础巩固
能力提升
变式训练
拓展培优
真题演练
换一批
1. 地理老师介绍道:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x千米,黄河长为y千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )
A.
B.
C.
D.
单选题
容易
2. 小清和小镇相约共同买一本《毕业纪念册》,若第一次小清比小镇多付8元,则总的少5元,若第二次小清比小镇少付3元,则总的多2元.已知小清两次一共付了12元,求《毕业纪念册》的单价.设小清第一次付了a元,第二次付了b元,则下列方程正确的是( )
A.
B.
C.
D.
单选题
容易
3. 古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.甲、乙持钱各几何?”其大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,则甲共有钱50.如果乙得到甲所有钱的
, 则乙也共有钱50.甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x、y,则可列方程组为( )
A.
B.
C.
D.
单选题
容易
1. 某份资料计划印制1000份,该任务由A,B两台印刷机先后接力完成,A印刷机印制150份/h,B印刷机印制200份/h.两台印刷机完成该任务共需6h.甲、乙两人所列的方程组如图所示,下列判断正确的是( )
甲
解:设A印刷机印制了xh,
B印刷机印制了yh.
由题意,得
乙
解:设A印刷机印制了m份,
B印刷机印制了n份.
由题意,得
A.
只有甲列的方程组正确
B.
只有乙列的方程组正确
C.
甲和乙列的方程组都正确
D.
甲和乙列的方程组都不正确
单选题
普通
2. 明代《算法统宗》有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名醨厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人.共同饮了一十九,三十三客醉颜生.试问高明能算士,几多醨酒几多醇?”设有醇酒
瓶,薄酒
瓶.根据题意可列方程组为( )
A.
B.
C.
D.
单选题
普通
3. 甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.设甲、乙两人每小时分别走x、y千米,则可列出方程组( )
A.
B.
C.
D.
单选题
普通
1. 我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四匹无零数,四军才分布一匹,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?
解答题
普通
2. 程大位《算法统宗》中有一道题为“隔沟计算”其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只,二家之数相当.两人闲坐恼心肠,画地算了半晌.这个题目翻译成现代文的意思是:甲、乙两个牧人隔着山沟放羊,两个人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙说:“我若得你9只羊,我们两家的羊数就一样多.”两人都在用心计算着对方的羊数,在地上列算式算了半天才知道对方的羊数.若设甲有x只羊,乙有y只羊,则可列二元一次方程组为
.
填空题
容易
3. 某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额为96万元.本周售出2辆A型车和1辆B型车,销售额为62万元.若设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意可列出方程组
.
填空题
容易
1. 定义:对于实数a,符号[a]表示不大于a的最大整数.如:[5.7]=5,[5]=5,[-π]=-4.
(1)
如果[a]=-2,那么a的取值范围是
.
(2)
如果
求满足条件的所有正整数x.
解答题
普通
2. 北京时间2024年6月25日,嫦娥六号返回器准确着陆于内蒙古四子王旗预定区域,工作正常,标志着我国探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回,这是一项了不起的成就!某超市为了满足广大航天爱好者的需求,计划购进A、B两种航天飞船模型进行销售,据了解,2件A种航天飞船模型和3件B种航天飞船模型的进价共计130元;3件A种航天飞船模型和2件B种航天飞船模型的进价共计120元.
(1)
求A、B两种航天飞船模型每件的进价分别为多少元?
(2)
若该超市计划正好用220元购进以上两种航天飞船模型(两种航天飞船模型均有购买),请你求出所有购买方案.
综合题
普通
3. 在《二元一次方程组》这一章的复习课上,王老师出了一个实际应用问题让同学们进行探究:在某地“乡村振兴”工作中,甲、乙两个工程队先后接力为某村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.
(1)
小红同学根据题意,列出了一个方程组
, 请写出小红所列方程组中未知数
表示的意义:x表示
, y表示
;
(2)
小芳同学的思路是设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.请你按照小芳的思路列出方程组,并求出甲、乙队各修建了多少米?
综合题
普通
1. 某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x场,负y场,则根据题意,下列方程组中正确的是( )
A.
B.
C.
D.
单选题
普通
2. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )
A.
B.
C.
D.
单选题
普通
3. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工
米,乙工程队每天施工
米,根据题意,所列方程组正确的是( )
A.
B.
C.
D.
单选题
普通