0
返回首页
1. 如图,AB是
的直径,弦
于点E,G是
上任意一点,连接AD,GD,AG.
(1)
找出图中和∠ADC相等的角,并给出证明;
(2)
已知BE=2,AE=8,求CD的长.
【考点】
勾股定理; 垂径定理;
【答案】
您现在
未登录
,无法查看试题答案与解析。
登录
解答题
普通
能力提升
真题演练
换一批
1. 我们定义:对角线互相垂直的四边形叫做"对垂四边形".
(1)
如图1,四边形ABCD为"对垂四边形".求证:
.
(2)
如图2,
是四边形ABCD内一点,连接AE,BE,CE和DE,AC与BD交于点
.若
.求证:四边形ABCD为“对垂四边形”
(3)
如图,四边形ABCD为"对垂四边形",
,
, 求CD的长.
解答题
困难
2. 如图,点
B
在以
DE
为直径的半圆上,
A
为圆心,连接
AB
, 设
DC
=
m
, 且
m
>
n
.
(1)
请用
m
,
n
表示Rt△
ABC
的三条边长.
(2)
若
m
,
n
均为不超过20的正整数,且使Rt△
ABC
的三条边长都是整数,
n
的值.
解答题
普通
3. 直角三角形纸片,两直角边
,
, 现将直角边
沿直线
对折,使它落在斜边
上、且与
重合,求
的长.
解答题
普通
1. 如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.
(1)
求证:△ACD∽△CFD;
(2)
若∠CDA=∠GCA,求证:CG为⊙O的切线;
(3)
若sin∠CAD=
,求tan∠CDA的值.
综合题
普通
2. 已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=( )
A.
B.
4
C.
D.
5
单选题
普通
3. 如图,
是
的外接圆,
交
于点E,垂足为点D,
,
的延长线交于点F.若
,
,则
的长是( )
A.
10
B.
8
C.
6
D.
4
单选题
普通